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Computational biology: Structure and 
organization of biomolecules and cells



Real-time class participation encouraged,  
but you can join in person or virtually

• Lecture live stream available to enrolled students on 
Canvas 
– Go to Canvas page for course:  

https://canvas.stanford.edu/courses/177465  
– Select “Panopto Course Videos” tab on the left-hand side 

• If you’re feeling unwell or believe you have been 
exposed to COVID-19, please attend class virtually 

• Wearing a mask in class is encouraged. Please help 
protect each other! 

https://canvas.stanford.edu/courses/177465


One-fifth of science Nobel Prizes relate to 
3D structure/organization of biomolecules  

Protein DNA

RNA

• Biological structure is critical to: 
– Understanding how biology works 
– Diagnosing, preventing, and treating disease 
– Food and energy production (e.g., agriculture)



Computation plays a critical and 
rapidly growing role in this field
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Nobel Prize (2013): 
Computational models of 
biomolecules

Dramatic growth of research and 
commercial activity (startups, 
acquisitions, etc.) in both physical 
simulation and machine learning 
approaches for determining and 
exploiting biomolecular structure 
and dynamics 



Outline for this lecture  

• What is structure? 
– Structure (and dynamics) at multiple spatial scales 

• Why is structure important? 
• Overview of topics we’ll cover 
• Recurrent themes 
• Course logistics



What is structure?



In daily life, we use machines 
with functional structure and moving parts



Cells and biomolecules (e.g., proteins) are also 
machines whose function depends on structure and 

moving parts

From Inner Life of the Cell | Protein Packing, XVIVO and Biovisions @ Harvard  
 



Structure (and dynamics)  
at multiple spatial scales

What is structure?



Protein structure

An adrenaline receptor  
(the β2 adrenergic receptor)



Protein dynamics

β2 adrenergic receptor



Example: how LSD binds to its target
“Revealed: Why LSD Lasts So Long!”  
AVI LSD YouTube Channel 

Wacker et al., Cell 168:377, 2017 
Collaboration with Bryan Roth (UNC)  https://www.youtube.com/watch?v=LjumHvnl-ME&feature=youtu.be



Proteins (and 
other molecules) 

often come 
together to form 
macromolecular 

complexes

Nuclear Pore Complex 
Alber et al., Nature 2007



These come together to form organelles

http://www.mpibpc.mpg.de/9547480/vesicle600.jpg
Synaptic vesicle



and cells

http://www.medfriendly.com/cell.html



Intracellular structure

David Goodsell

http://www.nikoninstruments.com/Products/
Microscope-Systems/Inverted-Microscopes/N-
STORM-Super-Resolution/(gallery); Zhuang group

Chih-Jung Hsu, Janis 
Burkhardt and Tobias 
Baumgart

http://www.nikoninstruments.com/Products/Microscope-Systems/Inverted-Microscopes/N-STORM-Super-Resolution/(gallery)
http://www.nikoninstruments.com/Products/Microscope-Systems/Inverted-Microscopes/N-STORM-Super-Resolution/(gallery)
http://www.nikoninstruments.com/Products/Microscope-Systems/Inverted-Microscopes/N-STORM-Super-Resolution/(gallery)
http://www.nikoninstruments.com/Products/Microscope-Systems/Inverted-Microscopes/N-STORM-Super-Resolution/(gallery)
http://www.nikoninstruments.com/Products/Microscope-Systems/Inverted-Microscopes/N-STORM-Super-Resolution/(gallery)


Janet Iwasa and Tomas Kirchhausen 

Intracellular dynamics (artist’s rendition)



Why is structure important? 
 



To understand how a machine works, 
we need more than a list of its parts

▪ We want to know the shapes of these parts, 
how they move, and how they affect each other



Structure determines function
• Example: Motor protein (walks along microtubules, dragging load)

From Inner Life of the Cell | Protein Packing



Structure determines function
• Example: Ribosome 

• Complex of many proteins and RNAs that together makes new 
proteins (by reading the genetic code and combining amino acids)

Hashem et al., Nature 494:385-9, 2013From Inner Life of the Cell, XVIVO and Biovisions @ Harvard  
 



Cell 
membrane

Binding

GPCR

Activation
G protein 
coupling

G protein

Structure determines function
• Example: G protein–coupled receptors (GPCRs) 

• Largest class of human drug targets 
• Function: allow the cell to sense and respond to molecules outside it

Image credit: Albert Pan



Structure-based drug design
• Almost all drugs act by binding to proteins and altering their function 
• Using knowledge of structures, we can design drugs that bind tightly to 

the desired protein, alter behavior of the protein in a desired way, avoid 
binding to other proteins, etc. 

• This requires solving challenging computational problems, even when a 
protein structure is already available

h"p://www.nih.gov/researchma"ers/
october2012/images/structure_l.jpg<



Designing new biomolecular machines
• Protein design, RNA design, etc. 
• Many applications within and beyond healthcare 

http://zhanglab.ccmb.med.umich.edu/image/Protein_design.gif



Overview of topics we’ll cover



Biomolecular structure prediction
• Example: Protein structure prediction (“folding”)  

– Given the sequence of amino acids that make up a 
protein, predict its 3D structure

Image source: https://
newenergyandfuel.com/wp-
content/uploads/2014/09/
Polypeptide-Chain.png

AlphaFold 
August 2021

RoseTTAFold 
August 2021



Biomolecular structure prediction

• Usually harder: predict 
structures of other 
biomolecules (e.g., 
RNA), or of multiple 
biomolecules bound to 
one another

Raphael Townshend, Stephan Eismann, 
Andrew Watkins, Ramya Rangan, Maria 
Karelina, Rhiju Das, and Ron Dror.  
Geometric deep learning of RNA 
structure. Science (August 2021)



Beta-blocker binding to the β2-adrenergic receptor
Dror et al., PNAS 2011

Molecular dynamics simulations



Molecular dynamics simulations

Folding of protein G  
(Lindorff-Larsen et al., Science, 2011)

Structural change in a  
G protein (Dror et al., Science 2015)



Protein design
▪ Given a desired protein structure (or function), 

design an amino acid sequence that achieves it

Divine et al., Designed 
proteins assemble antibodies 
into modular nanocages. 
Science 372:eabd9994 (2021)



Protein design
▪ Given a desired protein structure (or function), 

design an amino acid sequence that achieves it

“O
K. Here we go.” David Juergens, 
a computational chemist at the 
University of Washington (UW) 
in Seattle, is about to design a 
protein that, in 3-billion-plus 
years of tinkering, evolution 

has never produced.
On a video call, Juergens opens a cloud-

based version of an artificial intelligence (AI) 
tool he helped to develop, called RFdiffusion. 
This neural network, and others like it, are 
helping to bring the creation of custom pro-
teins — until recently a highly technical and 
often unsuccessful pursuit — to mainstream 
science.

These proteins could form the basis for vac-
cines, therapeutics and biomaterials. “It’s been 
a completely transformative moment,” says 

Gevorg Grigoryan, the co-founder and chief 
technical officer of Generate Biomedicines 
in Somerville, Massachusetts, a biotechnol-
ogy company applying protein design to drug 
development.

The tools are inspired by AI software that 
synthesizes realistic images, such as the 
Midjourney software that, this year, was 
famously used to produce a viral image of 
Pope Francis wearing a designer white puffer 
jacket. A similar conceptual approach, 
researchers have found, can churn out realistic 
protein shapes to criteria that designers spec-
ify — meaning, for instance, that it’s possible 
to speedily draw up new proteins that should 
bind tightly to another biomolecule. And early 
experiments show that when researchers man-
ufacture these proteins, a useful fraction do 

perform as the software suggests.
The tools have revolutionized the process of 

designing proteins in the past year, research-
ers say. “It is an explosion in capabilities,” says 
Mohammed AlQuraishi, a computational biol-
ogist at Columbia University in New York City, 
whose team has developed one such tool for 
protein design. “You can now create designs 
that have sought-after qualities.”

“You’re building a protein structure 
customized for a problem,” says David Baker, 
a computational biophysicist at UW whose 
group, which includes Juergens, developed 
RFdiffusion. The team released the software 
in March 2023, and a paper describing the 
neural network appears this week in Nature1. 
(A preprint version was released in late 2022, 
at around the same time that several other 

‘TRANSFORMATIVE’ AI DESIGNS 
CUSTOM PROTEINS ON DEMAND
Computer-devised biomolecules could form the basis of new 
vaccines or medicines. By Ewen Callaway

Two protein assemblies (right) were developed using an artificial-intelligence tool called RFdiffusion. 
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“You’re building a protein structure 
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a computational biophysicist at UW whose 
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Image: Wikipedia

Searching for potential drug molecules that bind to a target 
(usually a protein), and determine how they bind

Ligand docking and virtual screening



Determining molecular structures 
experimentally also requires solving 
challenging computational problems!

33



Determining molecular structures  
by crystallography

X-ray diffraction pattern 
Image: http://www.chem.ucla.edu/ 
harding/IGOC/X/x_ray_crystallography.html

Protein structure



Determining molecular structures by 
cryogenic electron microscopy (CryoEM)

Image: Wikipedia

CryoEM image
Reconstructed envelope

Image: http://people.cryst.bbk.ac.uk/~ubcg16z/
chaperone.html

Structure



Fluorescence microscopy and 
cellular-level organization

36

Data: Bettina van Lengerich, Natalia Jura 
Tracking and movie: Robin Jia 

▪ Including super-resolution microscopy

and beyond. Nevertheless, there still is substantial room
for improvement and optimization for both techniques.
Particularly, both methods pose challenges when it comes
to multichannel super-resolution imaging and to improv-
ing imaging resolution in the z-axis. For STORM and
PALM, multiple photo-switchable fluorophores of differ-
ent colors have been described and recently used to

produce multicolor maps of, for example, PSD compo-
sition [26!!]. In addition, incorporation of cylindrical
lenses and interferometric measurements allow for im-
provement in z-axis (axial) resolution, possibly to levels
even beyond the xy place (transverse) resolution [27!,28!].
However, these approaches have not yet seen widespread
use and the need for high precision chromatic aberration

4 Neurotechnology

CONEUR-990; NO. OF PAGES 8

Please cite this article in press as: Sigrist SJ, Sabatini BL. Optical super-resolution microscopy in neurobiology, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.10.014
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Current Opinion in Neurobiology

STED and STORM analysis of synaptic architecture. (a–c) STED imaging of Drosophila neuromuscular synapses. (a) STED microscopy reveals donut-
shaped structures recognized by the monoclonal antibody Nc82 against the protein Bruchpilot that are not resolvable by confocal microscopy. (b)
Upper panel: Boutons stained for BRP-N-Terminus (confocal; magenta) and BRP-Nc82 (STED; green) showing planar (arrow) and vertical (arrowhead)
active zones. Lower panel: Magnifications of individual planar (left) and vertical (right) active zones stained for BRP-Nc82 (STED) and BRP-N-Terminus
(confocal; b) and BRP-N-Terminus imaged with (STED). (c) Model of active zone organization at Drosophila neuromuscular synapses. (d–f) STORM
imaging of presynaptic and postsynaptic scaffolding proteins. Presynaptic protein Bassoon and postsynaptic protein Homer1 in glomeruli of the
mouse olfactory bulb were identified by immunohistochemistry using Cy3-A647 and A405-A647 conjugated antibodies, respectively. The conventional
fluorescence image (d) shows punctate patterns that are partially overlapping, whereas the STORM image of the same area clearly resolves distinct
synaptic structures. Further enlargement of the conventional images (e) does not reveal detailed structure of the synapses whereas the corresponding
STORM images clearly distinguish the presynaptic Bassoon and postsynaptic Homer1 clusters. (f) Imaging of multiple proteins via STORM reveals
their differential localizations in the synapse.
Taken with permission from [26!!].

Current Opinion in Neurobiology 2011, 22:1–8 www.sciencedirect.com

Sigrist & SabaGni, Current Opinion in Neurobiology 22:1-8, 2011   



How molecules move about a cell: 
diffusion and cellular-level simulation

Video: Naomi Latorraca



We’ll also cover important 
underlying computational methods

• Machine learning 
– Supervised and unsupervised 

• Image analysis 
• Sampling from probability distributions

Previous familiarity with these concepts is 
not required!



Notes on course contents

• Course split roughly in two parts 
1. Atomic-level modeling of biomolecules 
2. Coarser-level modeling and imaging-based methods 

• Focus will be on fundamentals, but most lectures will also 
cover topics of current research 

• Some overlap in content with CS 274 (BIOE/BMI/GENE 
214), but only about 20%. 
– This class (CS 279) is focused on structure. Much of CS 274 

covers other bioinformatics topics. 
– Many students take both classes, in either order, or sometimes 

simultaneously.

39



Recurrent themes



Recurrent themes
▪ Physics-based approaches (modeling based on 

first-principles physics) vs. data-driven approaches 
(machine learning based on experimental data) 

▪ Computation plays important role both in structural 
interpretation of experimental data and in 
structural predictions in the absence of such data 

▪ Similarities and differences in methods employed at 
different spatial scales 

▪ Energy functions (which associate an energy or 
potential with each possible structure) 

▪ Recurring math concepts: Fourier transforms, 
convolution, Monte Carlo methods



Course logistics



Course website

• https://cs279.stanford.edu  

• See “Course policies and evaluation criteria” 
document on website 

• To view last year’s lecture slides, follow “Fall 
2022” link on website 
– This year’s content will be similar but not identical

https://cs279.stanford.edu


Course announcements

• We will use Ed Discussion for announcements 
and for answering students’ questions 
– https://edstem.org/us/courses/47160/discussion/ 

• If you can’t access this page: 
– Create an Ed account using your Stanford (SUNet) 

email address 
– If you still can’t access the page, email 

cs279staff@cs.stanford.edu 

https://edstem.org/us/courses/47160/discussion/
mailto:cs279staff@cs.stanford.edu


Expected background

• Course is intended to be broadly accessible to students with either 
computational or biological backgrounds 

• Assignments involve basic programming in Python 
– You need not have used Python before. You should have done some 

programming (in any language) before. 
– Python tutorial: see website for time. It will be recorded so that you’ll be 

able to view it later as well. 

• You should have some previous exposure to biology, chemistry, 
and physics (at least in high school) 

• You should have studied math through elementary calculus 
– I’ll teach some additional relevant math concepts (e.g, Fourier transforms), 

with a focus on basic ideas/intuition rather than on equations.



Assignments and Exam

• Assignments 
– First three cover specific topics. 
– Fourth is a more open-ended “project.”  
– First assignment is shorter than second and third. 

For the project, we expect only a bit more work 
than the second and third assignments. 

– See collaboration and chatbot policy under 
“Course policies” on web page. 

• Exam covering key concepts



Lectures
• Lecture live streams and recordings available 

to enrolled students on Canvas 
– Go to Canvas page for course and select “Panopto 

Course Videos” tab on the left-hand side 
– Or click here: https://canvas.stanford.edu/courses/

177465/external_tools/3367  

• Lecture slides will be available on course 
website, along with optional reading material

https://canvas.stanford.edu/courses/177465/external_tools/3367
https://canvas.stanford.edu/courses/177465/external_tools/3367
https://canvas.stanford.edu/courses/177465/external_tools/3367


Participate in class
• I encourage you to join the class in real time (in 

person or virtually) and ask/answer questions 
– This makes the class better for everyone 
– We’ll do small-group discussions in class 

• 2% of course grade is based on participation 
– You can also earn extra credit for participation  

• For those who are not available during class time: 
– You can earn full participation credit by answering 

other students’ questions on Ed Discussion at any time 
– You can also earn an A in the class without any 

participation credit 



Participate in class
• If joining in person, raise your hand in ask/answer questions  

• If joining virtually, post questions/answers as comments 
through Panopto’s Discussion feature, so that a TA can 
share them 
– Please post these as public comments. Do not select “moderator 

only.”



Feedback welcome!

• I want to continue improving this course, and 
would appreciate your suggestions 

• Please speak up when you don’t understand 
something



Course staff
• Prof. Ron Dror  

– http://drorlab.stanford.edu/rondror.html 
– Office hours: After every class, outside the classroom or at 

http://bit.ly/cs279-ron 

• TAs:  
– Jasper McAvity 
– Patricia Suriana 
– Jennifer Xu 
– Ruhi Sayana 
– Luci Bresette 
– Douglas Li 

– Office hours and contact info at cs279.stanford.edu 

• The best way to get most questions answered is by posting on Ed 
Discussion

http://drorlab.stanford.edu/rondror.html
http://bit.ly/cs279-ron
http://cs279.stanford.edu

